MTH 605: Topology I

Homework II

(Due 25/08)

- 1. Show that for a function $f : \mathbb{R} \to \mathbb{R}$, the $\epsilon \delta$ definition of countinuity is equivalent to the open set definition.
- 2. An indexed family of sets $\{A_{\alpha}\}$ is said to be *locally finite* if each point x of X has a neighborhood that intersects A_{α} for only finitely many values of α . Let $\{A_{\alpha}\}$ be a locally finite collection of closed subsets of X such that $X = \bigcup A_{\alpha}$. Show that if $f|_{A_{\alpha}}$ is continuous for each α , then f is continuous.
- 3. If (X, d) is a metric space, then the topology induced by d is the coarsest topology relative to which the function d is continuous.
- 4. Let $A \subset X$, and let $f : A \to Y$ be a continuous map of A into a Hausdorff space Y. Show that if f may be extended to a continuous function $g : \overline{A} \to Y$, then g is uniquely determined by f.
- 5. Prove that an uncountable product of \mathbb{R} with itself is not metrizable.
- 6. Given $p \ge 1$, define

$$d(x,y) = \left[\sum_{i=1}^{n} |x_i - y_i|^p\right]^{1/p},$$

for $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. Show that d is a metric that induces the standard topology on \mathbb{R}^n .

- 7. Let \mathbb{R}_0 be the subset of \mathbb{R}^{∞} consisting of sequences in \mathbb{R} that are eventually 0. Find the closure of \mathbb{R}_0 in \mathbb{R}^{∞} under the product and box topologies.
- 8. Define a map $h : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ that is linear in each coordinate. Is h continuous under the product and box topologies?